3.1 Exponential and Logistic Functions

Exponential Function:

\[f(x) = a \cdot b^x \]

where:
- \(a \) (initial value when \(x=0 \)) is a nonzero real number
- \(b \) (base) is positive, and \(b \neq 1 \)

Which are exponential functions?

a. \(f(x)=5^x \)
 - **Yes**
 - base = 5
 - initial value = 1

b. \(f(x)=3x^2 \)
 - **No**

c. \(f(x)=4x^{-3} \)
 - **No**

d. \(f(x)=7 \cdot 2^{-x} \)
 - **Yes**
 - base = \(\frac{1}{2} \)
 - initial value = 7
Determine the formulas for $g(x)$ and $h(x)$.

Values for Two Exponential Functions

<table>
<thead>
<tr>
<th>x</th>
<th>$g(x)$</th>
<th>$h(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>$4/9$</td>
<td>128</td>
</tr>
<tr>
<td>-1</td>
<td>$4/3$</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>$1/2$</td>
</tr>
</tbody>
</table>

$$f(x) = a \cdot b^x$$

$$g(x) = 4 \cdot \left(\frac{3}{2}\right)^x$$

$$h(x) = 8 \cdot \left(\frac{1}{4}\right)^x$$
Exponential Growth and Decay

For any exponential function $f(x) = a \cdot b^x$ and any real number x,

- If $a > 0$ and $b > 1$, the function is increasing (exponential growth) and b is the growth factor.
- If $a > 0$ and $b < 1$, the function is decreasing (exponential decay) and b is the decay factor.
Exploration #1 (pg. 279)

- Domain: $(-\infty, \infty)$
- Range: $(0, \infty)$
- Continuity: Continuous
- Increase/Decrease: $(-\infty, \infty)$
- Symmetry: None
- Boundedness: Unbounded/bounded below
- Extrema: None
- Asymptotes: $y = 0$
- End behavior:
Describe how each graph is transformed from \(f(x) = 5^x \).

a. \(g(x) = 5^{x+1} \) left 1

b. \(h(x) = 5^{-x} \) refl. over y

c. \(k(x) = 3 \cdot 5^x \) vert. stretch
\[
\left(1 + \frac{1}{x}\right)^x
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>((1+\frac{1}{x})^x)</th>
<th>((1.1)^x)</th>
<th>((1.01)^{100})</th>
<th>((1.001)^{1000})</th>
<th>((1.00001)^{100,000})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(2.594)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>(2.705)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>(2.717)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>(2.718)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>(2.718)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Natural Base e.

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$
Exponential Functions and the Base e.

Any exponential function $f(x) = a \cdot b^x$ can be rewritten as

$f(x) = a \cdot e^{kx}$

for an appropriately chosen real number k.

If $a > 0$ and $k > 0$, $f(x)$ is an exp. growth fn.
If $a > 0$ and $k < 0$, $f(x)$ is an exp. decay fn.

Ex.
1. Graph $f(x) = 2^x$.

2. Overlay the graphs for $g(x) = e^{kx}$ for $k=0.4, 0.5, 0.6, 0.7, \text{ and } 0.8$.

3. For which value of k does the graph of g most closely match the graph of f?
Logistic Growth Functions:

\[f(x) = \frac{c}{1 + a \cdot b^x} \quad \text{or} \quad f(x) = \frac{c}{1 + a \cdot e^{-kx}} \]

where \(a, b, c, \) and \(k \) are positive, with \(b < 1 \)

\(c \) is the limit to growth

If \(a = c = k = 1 \), then we get the logistic growth function

\[f(x) = \frac{1}{1 + e^{-x}} \]
Graph and find the y-int. and horizontal asymptotes.

\[f(x) = \frac{20}{1 + 2e^{-3x}} \]

y-int. \(x = 0 \)

\[f(0) = \frac{20}{1 + 2e^{0}} = \frac{20}{3} = 6 \frac{2}{3} \]

horiz. \(y = 20 \), \(y = 0 \)
The number B of bacteria in a petri dish culture after t hours is given by

$$B = 100e^{0.693t}$$

a. What was the initial number of bacteria present?

b. How many bacteria are present after 6 hours?